

Pierre DELPLACE

TOPOLOGICAL ORIGIN

OF EQUATORIAL WAVES

Physics at the equator: from the lab to the stars

Physics at the equator: from the lab to the stars

Physics at the equator: from the lab to the stars

Physics at the equator: from the lab to the stars

Physics at the equator: from the lab to the stars

Physics at the equator: from the lab to the stars

Physics at the equator: from the lab to the stars

EQUATORIAL

WAVES

ACOUSTIC-GRAVITY

WAVES

Physics at the equator: from the lab to the stars

H / L << 1

Mass conservation

Momenta conservation

$$\partial_t h + \nabla .(h\mathbf{u}) = 0$$

$$\partial_t \mathbf{u} + (\mathbf{u} . \nabla) \mathbf{u} = -g \nabla h - f \hat{\mathbf{n}} \times \mathbf{u}$$

H / L << 1

Mass conservation

Momenta conservation

$$\partial_t h + \nabla .(h\mathbf{u}) = 0$$

$$\partial_t \mathbf{u} + (\mathbf{u} . \nabla) \mathbf{u} = -g \nabla h - f \hat{\mathbf{n}} \times \mathbf{u}$$

Breaks time-reversal symmetryChanges sign at the equator

Incompressible Shallow

H / L << 1

 $H = \begin{pmatrix} 0 & -if(y) & i\partial_x \\ if(y) & 0 & i\partial_y \\ i\partial_x & i\partial_y & 0 \end{pmatrix}$

 $\begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{\eta} \end{pmatrix} = \mathscr{H}$ $\left| \begin{array}{c} \widetilde{u} \\ \widetilde{v} \end{array} \right|$ ω

 $\mathcal{H} = H(k_x, k_y, f)$

f(y) changes sign

 $\hat{\mathcal{H}}_{op} = H(k_x, i\partial_y, y)$

$$H = \begin{pmatrix} 0 & -if(y) & i\partial_x \\ if(y) & 0 & i\partial_y \\ i\partial_x & i\partial_y & 0 \end{pmatrix}$$

$$\omega \begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{\eta} \end{pmatrix} = \mathscr{H} \begin{pmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{\eta} \end{pmatrix}$$

 $\mathcal{H} = H(k_x, k_y, f)$

f(y) changes sign

 $\hat{\mathcal{H}}_{op} = H(k_x, i\partial_y, y)$

 $\mathcal{H} = H(k_x, k_y, f)$

 $\mathcal{H} = H(k_x, k_y, f)$

 $\mathcal{H} = H(k_x, k_y, f)$

 $\mathcal{H} = H(k_x, k_y, f)$

 $\mathcal{H} = H(k_x, k_y, f)$

 $\mathcal{H} = H(k_x, k_y, f)$

 $\mathcal{H} = H(k_x, k_y, f)$

U(1) Vector Bundle

$$\mathscr{C} = \frac{1}{2\pi} \int_{S^2} F \, dS \in \mathbb{Z}$$

tangent Vector Bundle

$$\chi = \frac{1}{2\pi} \int_{S^2} \kappa \, dS \in \mathbb{Z}$$

U(1) Vector Bundle

$$\mathscr{C} = \frac{1}{2\pi} \int_{S^2} F \, dS \in \mathbb{Z}$$

U(1) Vector Bundle

$$\mathscr{C} = \frac{1}{2\pi} \int_{S^2} F \, dS \in \mathbb{Z}$$

U(1) Vector Bundle

$$\mathscr{C} = \frac{1}{2\pi} \int_{S^2} F \, dS \in \mathbb{Z}$$

Berry Curvature

 $F(\theta, \phi) = i \frac{\partial \psi^{\dagger}}{\partial \theta} \cdot \frac{\partial \psi}{\partial \phi} - i \frac{\partial \psi^{\dagger}}{\partial \phi} \cdot \frac{\partial \psi}{\partial \theta}$

Gauge invariant, observable quantity Enters the dynamics of a wave packet

U(1) Vector Bundle

$$\mathscr{C} = \frac{1}{2\pi} \int_{S^2} F \, dS \in \mathbb{Z}$$

Berry Curvature

 $F(\theta, \phi) = i \frac{\partial \psi^{\dagger}}{\partial \theta} \cdot \frac{\partial \psi}{\partial \phi} - i \frac{\partial \psi^{\dagger}}{\partial \phi} \cdot \frac{\partial \psi}{\partial \theta}$

Gauge invariant, observable quantity Enters the dynamics of a wave packet

manifestation in ray theory See Nicolas Perez Poster!

 $\mathcal{H} = H(k_x, k_y, f)$

EQUATORIAL

WAVES

ACOUSTIC-GRAVITY

WAVES

 $N = \sqrt{-g\frac{\partial_z \rho_0}{\rho_0} - \frac{g^2}{c_s^2}}$

Buoyancy frequency (~ 10 mHz)

 $ho_0(z)
ho_0(z)$ Z $\rightarrow X$

$$N = \sqrt{-g\frac{\partial_z \rho_0}{\rho_0} - \frac{g^2}{c_s^2}}$$

Buoyancy frequency (~ 10 mHz)

 $ho_0(z)$ $p_0(z)$ Z $\rightarrow X$

Mass conservation

Momenta conservation

Entropy conservation

$$\partial_t \rho + \nabla .(\rho \mathbf{u}) = 0$$

$$\partial_t \mathbf{u} + (\mathbf{u} . \nabla) \mathbf{u} = -\rho g \mathbf{e}_z - \nabla p$$

$$ds = 0$$

$$N = \sqrt{-g\frac{\partial_z \rho_0}{\rho_0} - \frac{g^2}{c_s^2}}$$

Buoyancy frequency (~ 10 mHz)

$$\begin{array}{c} \rho_0(z) \\ p_0(z) \\ z \\ \uparrow \\ & \longrightarrow x \end{array}$$

$$H = \begin{pmatrix} 0 & 0 & 0 & i\partial_{x} \\ 0 & 0 & iN(z) & -iS(z) + i\partial_{z} \\ 0 & -iN(z) & 0 & 0 \\ i\partial_{x} & iS(z) + i\partial_{z} & 0 & 0 \end{pmatrix}$$

$$\omega \begin{pmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{\rho} \\ \tilde{p} \end{pmatrix} = \mathscr{H} \begin{pmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{\rho} \\ \tilde{p} \end{pmatrix}$$

$$N = \sqrt{-g\frac{\partial_z \rho_0}{\rho_0} - \frac{g^2}{c_s^2}}$$

Buoyancy frequency (~ 10 mHz)

$$S = \frac{1}{2} \left(\frac{N^2 c_s}{g} - \frac{g}{c_s} \right)$$

Sreaks vertical mirror symmetry

$$\rho_0(z)$$

$$p_0(z)$$

$$z$$

$$\downarrow$$

$$x$$

$$H = \begin{pmatrix} 0 & 0 & 0 & i\partial_{x} \\ 0 & 0 & iN(z) & -iS(z) + i\partial_{z} \\ 0 & -iN(z) & 0 & 0 \\ i\partial_{x} & iS(z) + i\partial_{z} & 0 & 0 \end{pmatrix}$$

S is a parameter

$$\mathcal{H} = H(k_x, k_z, S)$$

$$S(z) \text{ is a function of } z$$

$$\hat{\mathcal{H}}_{op} = H(k_x, i\partial_z, z)$$

$$S(z)$$

$$H = \begin{pmatrix} 0 & 0 & 0 & i\partial_{x} \\ 0 & 0 & iN(z) & -iS(z) + i\partial_{z} \\ 0 & -iN(z) & 0 & 0 \\ i\partial_{x} & iS(z) + i\partial_{z} & 0 & 0 \end{pmatrix}$$

$$\omega \begin{pmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{\rho} \\ \tilde{p} \end{pmatrix} = \mathscr{H} \begin{pmatrix} \tilde{u} \\ \tilde{w} \\ \tilde{\rho} \\ \tilde{p} \end{pmatrix}$$

S(z) is a function of z

$$\hat{\mathcal{H}}_{op} = H(k_x, i\partial_z, z)$$

S(z) is a function of z

$$\hat{\mathcal{H}}_{op} = H(k_x, i\partial_z, z)$$

+ solid boundary

• from <u>Atmospheric and oceanic fluid dynamics (G. K. Vallis)</u>

Antoine Venaille ENS de Lyon

Topological origin of equatorial waves Pierre Delplace, J. B. Martson and Antoine Venaille Science 358, 1075 (2017)

Topological transition in stratified atmospheres Manolis Perrot, Pierre Delplace and Antoine Venaille <u>Nat. Phys. (2019)</u>

Chiral Maxwell waves in continuous media from Berry monopoles Marco Marciani and Pierre Delplace arXiv:1906.09057

Brad Marston Brown University

Marco Marciani ENS de Lyon