Some differences between extratropical and equatorial eddy-driven jets...

... or how to spinup a jet without a vorticity source

Pablo Zurita-Gotor

Universidad Complutense de Madrid

Physics at the equator: from the lab to the stars. ENS Lyon, October 17th

- Faster rotation than the equatorial surface
- Angular momentum exceeds Ωa^2 somewhere
- Equatorial westerlies

SUPERROTATION

Hide's theorem

Without friction, a symmetric circulation conserves angular momentum $M = \Omega a^2$ (with friction, it can only lose it)

Superrotation requires *eddy momentum forcing*

Superrotating jets **must** be eddy-driven

Why Earth does not superrotate?

With non-zero obliquity, a symmetric circulation would conserve the ITCZ angular momentum: $M = \Omega a^2 \cos^2 \varphi_0$

Westerly eddy forcing increases M on Earth, but not enough

 $\Omega a^2 \mathrm{cos}^2 \, \varphi_0 < M \lesssim \Omega a^2$

Weak superrotation on Earth (faster rotation than the surface at the ITCZ)

Superrotating jets **must** be eddy-driven

Large body of theory on eddy-driven jets (e.g., the terrestrial extratropical jet)

$$\left. \frac{\partial \bar{u}}{\partial t} \right|_{eddy} \approx -\frac{\partial \overline{u'v'}}{\partial y} \approx \overline{v'\xi'} > 0$$

- Acceleration by *upgradient* vorticity fluxes (need a vorticity source)
- Mechanism: meridional Rossby wave propagation
- Dissipation (Andrews & McIntyre): breaking vorticity waves (mechanical)

Classical paradigm for superrotation based on these ideas (Held 1999). Vorticity source due to eddy heating:

- SST structure -day/night contrast -MJO

Main problem with this idea (Showman and Polvani 2011):

Acceleration by *upgradient* vorticity fluxes (need a vorticity source)

VORTICITY SOURCE IS WEAK IN THE DEEP TROPICS $\mathcal{F}_{\xi} = -(f + \xi)Q'$

Can superrotation occur without a vorticity source? What is the dynamics?

1. An intriguing limit: small/slowly rotating planets

Non-small thermal Ro, wide-tropics

 $\xi_a = \xi + f$ small over broad tropical region => expect $\overline{v'\xi'} \to 0$ Prone to superrotation (Kelvin-Rossby instability)

2. Rapidly rotating planets (Earth)

 ξ_a small near equator only $\rightarrow \overline{v'\xi'}$ may not be small But with weak vorticity source, expect downgradient $\overline{v'\xi'} < 0$

Kelvin-Rossby instability and small-planet superrotation

• First suggested by Iga and Matsuda (2005) as a possible driver for Venus superrotation

 Mitchell and Vallis (2010) and Potter et al (2014) find spontaneous transition to superrotation at *large thermal Rossby number* in idealized dry GCM

Acceleration imparted by mode with K-R structure

Potter et al (2014)

Equilibration of Kelvin-Rossby instability: shallow water

Mode produces equatorward momentum flux but no Eulerian-mean acceleration!!!

Vector-invariant momentum equation:

$$\frac{\partial \overline{u}}{\partial t} = \overline{v'\xi'} = -\frac{\partial \overline{u'v'}}{\partial y} + \overline{u'D'} \approx 0 \qquad D' = \frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y}$$

Expect small vorticity fluxes because of the small vorticity gradient for this problem

This requires cancellation between the eddy momentum convergence and the $\overline{u'D'}$ term

 $\overline{\nu'\xi'} = -\frac{\partial \overline{u'v'}}{\partial y} + \overline{u'D'} \approx 0$

Mysterious perfect cancellation

Better perspective: two distinct contributions to meridional eddy momentum convergence:

$$-\frac{\partial \overline{u'v'}}{\partial y} = \overline{v'\xi'} - \overline{u'D'}$$

 $\overline{v'\xi'}$ dominates in the extratropics but is very small near the equator, where $\overline{u'D'}$ dominates

Where is the momentum flux going?

$$\frac{\partial \overline{u^*}}{\partial t} = -\frac{\partial \overline{u'v'}}{\partial y} = \overline{v'\xi'} - \overline{u'D'}$$

The momentum convergence does not force just \bar{u} but the *full mass-weighted momentum* $\overline{u^*} = \frac{\overline{hu}}{\overline{h}} = \bar{u} + \overline{u'h'} / \bar{h}$

rφ

- Showed that \overline{u} is only forced by $\overline{v'\xi'}$
- The $\overline{u'D'}$ term must then force $\overline{u'h'}$
- This term captures the full *linear* tendency

Weakly unstable/weakly nonlinear simulation

More unstable NL simulations crash. As the Kelvin wave steepens, $h' \rightarrow \overline{h}$ and $h \rightarrow 0$

Equilibration of Kelvin-Rossby instability in 3D

Barotropic basic state (same as before), uniformly stratified => INTERNAL Kelvin modes

As before, equatorward momentum fluxes but weak vorticity fluxes in the tropics

Eddy momentum flux MUM

Eddy vorticity flux MUM)

However, we can get superrotation now.

Isentropic diagnostics (near level max. acceleration, *h* is isentropic density now)

- Initially only $\overline{u'h'}$ grows, as in the shallow-water model
- After 1-2 days, \overline{u} starts growing. The Eulerian-mean acceleration dominates the change in $\overline{u^*}$ at equilibration as $\overline{u'h'}$ dissipates

2. Frontal steepening: $h \rightarrow 0$

Vertical-mean wind change

- Though formally adiabatic, thermal dissipation is key to changing \bar{u}
- Eulerian acceleration imparted by *cross-isentropic advection* during Kelvin wave breaking $\overline{u'h'} \rightarrow \overline{u}$

Would need to parameterize Kelvin wave breaking to get this in shallow water model

Superrotation in rapidly-rotating planets

Results strongly reminiscent of Showman & Polvani (2011)

- -> Forced Matsuno-Gill response to day/night heating contrast
- -> Superrotation driven by Kelvin-Rossby interaction

Showman & Polvani (2011)

Main differences: -Forced/unforced -Small thermal Ro -Narrow tropics

Similar to us, their standard shallow-water model does not superrotate

Vorticity flux only vanishes near the equator, but is **negative elsewhere** (weak vorticity source) and cannot accelerate the flow

SP11 achieved superrotation by adding vertical advection

Dynamics of weak superrotation on Earth

- Year-round westerly acceleration at the Equator, specially during solstices
- Only weak superrotation (i.e., relative to ITCZ) due to import of low *M* by Hadley cell

Dynamics of weak superrotation on Earth

- Year-round westerly acceleration at the Equator, specially during solstices
- Only weak superrotation (i.e., relative to ITCZ) due to import of low *M* by Hadley cell

DJF

$$-\frac{\partial \overline{u'v'}}{\partial y} = \overline{v'\xi'} - \overline{u'D'}$$

DJF Upper-level eddy divergence and wind vectors

Vertical advection/mixing key for irreversibility

With no vertical shear, the upper-layer acceleration $\overline{u'D'} < 0$ would be compensated by lower-layer deceleration $\overline{u'D'} > 0$

With vertical shear, there is vertical advection and mixing

Meridional convergence

$$-\frac{\partial \overline{u'v'}}{\partial y} = \overline{v'\xi'} - \overline{u'D'}$$

Full eddy acceleration

$$\vec{\nabla} \cdot \vec{F} = \overline{\nu' \xi'} - \overline{\omega' \frac{\partial u'}{\partial p}}$$

$$-\frac{1}{a\cos^2\varphi}\frac{\partial(\overline{u'v'}\cos^2\varphi)}{\partial\varphi}\approx\overline{v'\xi'}$$

- Governed by *rotational* dynamics, acceleration by *upgradient* vorticity fluxes (need a vorticity source)
- Mechanism: Rossby wave propagation
- Dissipation: breaking vorticity waves

Equatorial eddy-driven jets

- Weak vorticity source → *downgradient* vorticity fluxes decelerate the flow.
- Divergent mechanism: eddy vertical overturning
- *Diabatic* dissipation, momentum mixing due to cross-isentropic advection

$$\hat{u}_{t} + \bar{v}^{*} [(a \cos \phi)^{-1} (\bar{u} \cos \phi)_{\phi} - f] + \bar{Q}^{*} \bar{u}_{\theta} - \bar{X}^{*}$$
 Isentropic EP relation
$$= -\bar{\sigma}^{-1} (\overline{\sigma' u'})_{t} + (\bar{\sigma} a \cos \phi)^{-1} \tilde{\nabla} \cdot \tilde{F}$$
 (3.9.7a) And rews et al (1987)

Mass-weighted momentum

$$\frac{\partial}{\partial t} \left(\bar{h} \overline{u^*} \right) - \bar{h} \overline{v^*} \left(f + \bar{\xi} \right) + \bar{h} \overline{Q^*} \frac{\partial \bar{u}}{\partial \theta} = \frac{1}{\operatorname{acos} \phi} \vec{\nabla} \cdot \vec{F}$$

Eulerian-mean momentum $\frac{1}{2}$

$$\frac{\partial}{\partial t} (\bar{h}\bar{u}) - \bar{h}\overline{v^*} (f + \bar{\xi}) + \bar{h}\overline{Q^*} \frac{\partial\bar{u}}{\partial\theta} \approx \bar{h}^2 \overline{v'q'} - \bar{h}\overline{Q'} \frac{\partial u'}{\partial\theta}$$

Eddy momentum
$$\frac{\partial}{\partial t} (\overline{u'h'}) \approx -\overline{h}^2 \overline{v'q'} + \overline{h} \overline{Q'} \frac{\partial u'}{\partial \theta} + \frac{1}{a\cos\phi} \vec{\nabla} \cdot \vec{F}$$

- Eliassen-Palm convergence forces mass-weighted momentum, not just \overline{u}
- When $\overline{h}^2 \overline{v'q'} \overline{h} \overline{Q'} \frac{\partial u'}{\partial \theta} = 0$, $\vec{\nabla} \cdot \vec{F}$ only accelerates the eddy term $\overline{u'h'}$!
- Changing the Eulerian-mean momentum requires mixing/dissipation:

$$\bar{h}^2 \overline{v'q'} - \bar{h}Q' \frac{\partial u'}{\partial \theta} \neq 0$$

 $\overline{v'q'}$ = Rossby wave breaking

 $\overline{Q'\frac{\partial u'}{\partial \theta}}$ = cross-isentropic advection

MJO

- Kelvin-Rossby instability (superrotation of small/slowly rotating planets)
 - Negligible vorticity flux: $\overline{v'\xi'} \approx 0$
 - Eddy momentum convergence due to $-\overline{u'D'}$, only change mass-weighted momentum $\overline{u'h'}$
 - Acceleration due to cross-isentropic advection in connection with Kelvin wave breaking

- Showman & Polvani (superrotation of tidally-locked hot Jupiters)
 - Vorticity flux small only at the Equator but <u>negative</u> <u>elsewhere</u> $\overline{v'\xi'} < 0$ (vorticity sink, not source!)
 - Meridional momentum convergence by $-\overline{u'D'}$ cannot change Eulerian-mean momentum
 - Acceleration requires vertical (cross-isentropic) advection
- Weak superrotation on Earth during the solstices
 - With weak vorticity source, also expect negative vorticity fluxes $\overline{v'\xi'} < 0$

