INTERPLAY OF PLANETARY WAVES AND STOCHASTICALLY FORCED TURBULENCE IN THE TROPICS ON A SHALLOW EARTH

Josef Schröttle^{1*}, Nili Harnik¹, Yair Cohen², D.L. Suhas³, Jai Sukhatme³

A band of clouds forms in the inner tropical convergence zone (Physics Today).

¹Department of Geophysics, Tel Aviv University, Israel ² California Institute of Technology, Pasadena, USA ³ Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

I) Approach to Moist Equatorial Waves

... from the perspective of small scale stochastic forcing

Validation Experiment

We excite a dry solution as calculated by Gill (1980)

We include **moisture** in the equations & ask:

- Can small scale stochastic forcing initiate self-aggregation?
- How does a moist upscale energy cascade emerge?
- What kind of stochastic forcing excites **planetary waves**?

I) Moist Shallow Water Equations

Vorticity
$$\zeta_t = -\nabla \cdot (\zeta v) + f^{\zeta}$$

Divergence $\delta_t = (\nabla \times \zeta v)_m - \Delta E + f^{\delta}$
Height $h_t = -\nabla \cdot (h v) - L q^+ / \tau_q + f^h + S^h$
Moisture $q_t = -\nabla \cdot (q v) - q^+ / \tau_q - q^- / \tau_e + f^q$
Dry Energy $E = gh + \frac{\|v^2\|}{2}$ open system
 $\tau_q = 0.1 \text{ day}$ $\tau_e = 10.0 \text{ days}$

Stochastic noise

- Random kicks
- Lévy-process
- Conservative

Background Literature

Kuskin (2006) Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions

The code is based on **dynamical core** developed by *Schaeffer et al. (2013, 2018).* Used in experiments including **moisture** following *Gill (1982)* by *Suhas et al. (2015, 2017)*.

I) Moist Shallow Water Experiments

Overall, we ran **48 experiments** varying parameters of

- stochastic forcing time-scale
- stochastic forcing **spatial scale**
- moisture parameterization

Experiment	Dry/Moist	Noise on	
1	Dry	Vorticity	Single-layer shallow water
1.b	Passively Moist	Vorticity	
2	Dry	Divergence	
2.b	Passively Moist	Divergence	
3	Moist	Moisture	
4	Dry	Vorticity	3-level pressure tendency

I) Shallow Water Flow on the Sphere

Experiment 1) Dry – vorticity forced

H = 300 m

Height Perturbation h' / m

Day 500

Easterlies in the *tropics* and *westerly jets* with *(anti-)cyclones* in the *extra-tropics*.

II) Space Time Spectra of Equatorial Waves

- Very discrete waves reproduced from Suhas et al. (2015).
- Following linear dispersion relations without removing background noise (needed to do in observations by *Wheeler and Kiladis*, 1999)
- No low frequency modes as observed in nature

II) Spectra of Waves & Turbulence in Tropics

Experiment 1) Dry – vorticity forced

Isotropic flow occurs below the scale of planetary waves.

II) Spectral Kinetic Energy Evolving in Time

Experiment 1) Dry – vorticity forced

Upscale cascade occurs in evolution of vorticity forced dry flow.

II) Spectral Kinetic Energy Evolving in Time

Exp. 2) Dry - divergence forced

Exp. 1) Dry - vorticity forced

No upscale cascade beyond forcing magnitude in divergence forced dry flow.

II) Spectral Kinetic Energy Evolving in Time

Exp. 3) Moist - moisture forced

<u>Exp. 1</u>) Dry - vorticity forced

Rapid upscale cascade occurs in moisture forced moist flow.

II) Energy Evolution

This effect is especially strong in regions of **low wind speed**.

II) High frequency FFT for moisture (day 1)

II) Evolution of moisture in zonal direction

Zonal series of q^+ at Equator, y=0

<u>Experiment 2.b)</u> Passively Moist - divergence forced

 $\tau_a = 0.1 \text{ day}$

 τ_{a} , $\tau_{e} = \infty$ days

 $\tau_e = 10.0$ days

Experiment 3) Moist - moisture forced

III) Evolution of kinetic energy cascade

Experiment 3) **Moist - moisture forced**

Moisture Forcing E_{kin} snapshots (low pass filter k < 28)

III) Coherent Structures in Upscale Cascade

when **q+** is forced **randomly at much smaller scales**.

III) Coherent Structures in Upscale Cascade

<u>Experiment 1)</u> **Dry - vorticity forced**

<u>Experiment 3</u>) **Moist - moisture forced**

Eastward moving structures compare in scale and amplitude with simulations by *Yano et al. (1994)*

II) Zonal spectra of potential energy

<u>Summary</u>

- We simulate a -5/3 upscale cascade with equatorial waves (consistent with Suhas et al. 2015, 2017).
- Only vorticity & moisture forcing lead to self-aggregation & upscale energy cascades.
- Forcing moisture leads to eastward propagating modes & is possible out of previously dynamically passive low wind regions!
- <u>Next step</u>: Satellite observations exhibit more continuous spectra & low-frequency modes – before removing the background noise (Wheeler & Kiladis, 1999): before dot is after after after

IV) Space-Time Spectra in Shallow Water

Exp. 1) Dry - vorticity forced

Space-Time Spectrum of Height Perturbation

- Very discrete in our shallow water experiments.
- No low frequency modes!

Yang & Ingersoll (2013)

Yang & Ingersoll (2013) forced the flow in a non-linear and nonconservative way!

- More continuous spectrum.
- Low frequency modes!

IV) Space-Time Spectra in 3-level PTM

Experiment 4) Dry - vorticity forced

Relaxation to Held & Suarez Temperature $T_{eq}(y)$ in 3-levels.

In 3-level flow we get **smoother** distributions with **low-frequency modes** (as in non-conservative forced experiments by *Yang & Ingersoll*).

Thank you for your attention!

