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The Madden Julian Oscillation (MJO) 
Dominant mode of intraseasonal variability in the 

tropics 

Main properties 
•  Coupled enhanced/suppressed convection 

dipole propagating eastward (vprop~5 m/s) 
•  Typical period ~ 40-50 days 
•  Appear in Indian Ocean – weakens in eastern 

Pacific 
•  Eight phases typically distinguished  

(Madden & Julian 1971, 1972) 
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Phase 6 
Enhanced convection in Pacific 
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The MJO influences multiple aspects of the 
Earth atmospheric circulation 



In the tropics 

Cyclone frequencies modulated in phase with 
MJO phases (Vitart 2009)  

Phase 2-3 

Phase 4-5 

Phase 6-7 

Phase 8-1 



In the Pacific region 

Northern Pacific jet shifts in latitude modulated by the MJO 
(Moore et al. 2010)  



In the Arctic regions 

Arctic surface air temperature modulated by MJO phases 
⇒ Possible links with the Arctic Amplification? 

(Yoo et al. 2011) 

After Phase 1 After Phase 5 

5 days 

10 days 

15 days 

5 days 

10 days 

15 days 



The MJO also influences the NAO… 



The North Atlantic Oscillation (NAO) 
Main properties 
•  Northward/southward displacement 

of the atlantic eddy-driven jet 
•  Subseasonal timescales 
•  Strongly affect European weather 
•  NAO+ => jet displaced northward 
•  NAO- => jet displaced southward 

Pressure perturbations  during NAO+ 



The North Atlantic Oscillation (NAO) 
Main properties 
•  Northward/southward displacement 

of the atlantic eddy-driven jet 
•  Subseasonal timescales 
•  Strongly affect European weather 
•  NAO+ => jet displaced northward 
•  NAO- => jet displaced southward 

The MJO-NAO observed teleconnexion 

Cassou (2008) 

Confirmed by e.g. Lin et al (2009), Henderson et al. 
(2016) 

Excess of NAO+ occurrence ~10 
days after MJO Phase 3 

Excess of NAO- occurrence ~10 
days after MJO Phase 6 
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The MJO excites a quasi-stationary Rossby wave that propagates 
to the midlatitudes – timescale 10-15 days 

Hoskins & Karoly (1981), Hoskins & Ambrizzi (1993), Jin & Hoskins (1995) 



What is the dynamical mechanism linking the MJO to 
the NAO? 
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What is the dynamical mechanism linking the MJO to 
the NAO? 

Zheng et al. (2019) – similar to Lin & Brunet (2018) 

Streamfunction anomalies following Phase 3 

Reanalysis data GCM + idealized heating 

Stationary Rossby 
wave 

Positive NAO 
after 12 days 

Little/no projection on the NAO 
in the simulations 
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A three levels QG code on the sphere 
Marshall & Molteni (1993) 

Streamfunction: ψ - Potential vorticity: q 

Advection Dissipation Forcing PV tendency 

Numerical method 
•  Pseudo-spectral spatial scheme (T42 discretization) 
•  3 levels: 200, 500 & 800 mbars 
•  « Realistic » orography and surface drag 

One single equation that describes Potential Vorticity 
(PV) evolution on the sphere 
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Model climatology & variability 

Control simulation: 
•  300,000 days (perpetual winter – about 800 years) 
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Model climatology & variability 

Control simulation: 
•  300,000 days (perpetual winter – about 800 years) 

Good agreement between model & observations given the model 
simplicity 
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A three levels QG code on the sphere 
Marshall & Molteni (1993) 

Advection Dissipation Forcing PV tendency 

How to choose the forcing term Si? 

Such that the mean flow is close 
to observations 

 
⇒  Inverse problem: Si evaluated using a 
Newton-Krylov algorithm 

⇒  Atmospheric flow is time variable 

Si=J(ψi
REF,qi

REF)+Di(ψ1
REF,ψ2

REF,ψ3
REF) 

 
⇒  Reference flow independent of time 
 
⇒  Only perturbations w.r.t to ψi

REF evolve  
with time 

Si=Si
clim Si=Si

stat 
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Enhanced convection creates: 
⇒  Upper level anticyclone to the west 
⇒  Upper level cyclone to the east 
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⇒  Upper level cyclone to the east 

200 mbar forcing – 15 days 

Forcing @800 mbar reversed in sign 

« Phase 3 » forcing 
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Enhanced convection creates: 
⇒  Upper level anticyclone to the west 
⇒  Upper level cyclone to the east 

200 mbar forcing – 30 days 

Forcing @800 mbar reversed in sign 

« Phase 3 » forcing 



Numerical experiments 

 
⇒  Two series of 10,000 short runs of 

30 days (restarted every 30 days): 
•  1 series with MJO forcing 
•  1 series w/o MJO forcing  

 
⇒  Two runs of 30 days: 

•  1 run with MJO forcing 
•  1 run w/o MJO forcing  

« Time-varying reference flow 
experiment » 

 
Si=Si

clim+Si
MJO 

« Stationary reference flow 
experiment » 

 
Si=Si

stat+Si
MJO 

 
⇒  Composite analyse of anomalies 
(streamfunction, wind velocities) as a 

function of time 
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« MJO Phase 3 » forcing 

200mb streamfunction perturbation, q0MJO=4×10-11 s-2, wind perturbation ~ a few m/s 

 The case of a stationary background flow  
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« MJO Phase 3 » forcing 
 The case of a stationary background flow  

•  Stationnary wave train similar to published GCM results (ex: Seo & Son 2012) 

200mb streamfunction perturbation, q0MJO=4×10-11 s-2, wind perturbation ~ a few m/s 
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« MJO Phase 3 » forcing 
 The case of a stationary background flow  

•  Stationnary wave train similar to published GCM results (ex: Seo & Son 2012) 
•  But pattern in North Atlantic does not project on the NAO+: PC1t=25d=0.04 

200mb streamfunction perturbation, q0MJO=4×10-11 s-2, wind perturbation ~ a few m/s 



« MJO Phase 3 » forcing 
 The case of a varying background flow  
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« MJO Phase 3 » forcing 
 The case of a stationary background flow  

•  Stationary Rossby wave path different in the two sets of experiments 

 The case of a varying background flow  

200mb streamfunction perturbation, q0MJO=4×10-11 s-2, wind perturbation ~ a few m/s 
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« MJO Phase 3 » forcing 
 The case of a stationary background flow  

•  Stationary Rossby wave path different in the two sets of experiments 
•  Signature of NAO+ after 20/25 days… 

 The case of a varying background flow  

200mb streamfunction perturbation, q0MJO=4×10-11 s-2, wind perturbation ~ a few m/s 



Consequence for the NAO 
Weak signature of the NAO+ after 
~20-25 days in the composite map 

PC1t=25d=0.23 
(x5 compared to stat case) 



Consequence for the NAO 

Probability Distribution Function of the first EOF Principal 
Components at t=25 days 

w/o MJO forcing 

with MJO forcing 

Result comparable to Cassou (2008): 30% excess NAO+ days (i.e PCEOF1>σEOF1) 

Weak signature of the NAO+ after 
~20-25 days in the composite map 

PC1t=25d=0.23 
(x5 compared to stat case) 



MJO « Phase 6 » forcing 
Recipe: take opposite sign of the forcing – redo 10,000 short runs 



MJO « Phase 6 » forcing 
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⇒ Wave train of opposite 
sign after 15 days 

⇒ Signature of NAO- after 
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MJO « Phase 6 » forcing 
Recipe: take opposite sign of the forcing – redo 10,000 short runs 

⇒ Wave train of opposite 
sign after 15 days 

⇒ Signature of NAO- after 
25 days 

~ 27% excess NAO- days at t=25d 
(comparable to « phase 3 » results) 
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Flow response in the north Pacific basin 

Why is the flow response zonally elongated when 
background flow is time varying? 

 The case of a stationary background flow   The case of a varying background flow  
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Streamfunction budget analysis 
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Time-averaged 
(or climatology) 

Low frequency (>8 days) 
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High frequency (<8 days) 
Component 

(synoptic activity) 
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Streamfunction budget analysis 
1.                  ψi(t)=ψi

REF
+ψi

LF(t)+ψi
HF(t) 

Time-averaged 
(or climatology) 

Low frequency (>8 days) 
component 

High frequency (<8 days) 
Component 

(synoptic activity) 

<dψ(t)/dt> = δψLIN(t) +δF +δψLF-LF(t) +δψHF-HF(t)+R 

2. Inject the terms into evolution equation for PV  

3. Compute ensemble average & anomalies 

Streamfunction 
time derivative 

Linear processes & 
Forcing 

(describe low freq. 
wave propagation) 

Nonlinear low-
frequency processes 

Nonlinear high-
frequency processes 



Streamfunction budget in Pacific (5 -> 15 days) 
Time-varying reference flow case 

<dψ(t)/dt> = δψLIN(t) +δF +δψLF-LF(t) +δψHF-HF(t)+R 
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Streamfunction budget in Pacific (5 -> 15 days) 

<dψ(t)/dt> = δψLIN(t) +δF +δψLF-LF(t) +δψHF-HF(t)+R 

Time-varying reference flow case 

Closed budget. Yes! 



Streamfunction budget in Pacific (5 -> 15 days) 

<dψ(t)/dt> = δψLIN(t) +δF +δψLF-LF(t) +δψHF-HF(t)+R 

Time-varying reference flow case 



Streamfunction budget in Pacific (5 -> 15 days) 
Stationary referece flow case Stationary reference flow case 
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Streamfunction budget in Pacific (5 -> 15 days) 

<dψ(t)/dt> = δψLIN(t) +δF +δψLF-LF(t) +δψHF-HF(t)+R 

Time-varying reference flow case 



Effect on the Pacific storm-track @ 15 days 

Contours: high frequency eddy Kinetic Energy (climatology) 
Shadings: Anomalies & 15 days 

Poleward shift of the stormtrack 5-10 days after Phase 3 
(in agreement with e.g. Moore et al. 2010) 



Flow response in Pacific basin  
  

1/ « Normal » Rossby wave response in Western Pacific  
2/ Modification of the Pacific synoptic activity in Eastern Pacific 
(poleward shift of the stormtrack) 

 
⇒ Flow response zonally elongated  
⇒ Pacific jet displaced poleward 



Effect on Atlantic synoptic eddies 

« Phase 3 » Case 

« Phase 6 » case 

⇒ Pacific jet displaced in latitudes 



Effect on Atlantic synoptic eddies 

« Phase 3 » Case 

« Phase 6 » case 

⇒ Pacific synoptic eddies deflected when going to the Atlantic 
(Drouard et al. 2013, Rivière & Drouard 2015, Tan et al. 2017) 

⇒ Positive phase of the NAO is favored due to (anticyclonic) 
eddy wave breaking  

⇒ Pacific jet displaced in latitudes 



Budget over the Atlantic (15 -> 25 days) 

<dψ(t)/dt> = δψLIN(t) +δF +δψLF-LF(t) +δψHF-HF(t)+R 

⇒ Atlantic projection on NAO+ dominated by nonlinear high 
frequency correlations 



Mechanism 

MJO Phase 3 forcing Stationnary Rossby wave in Pacific 

Modifies Pacific synoptic activity Eastern Pacific Jet 
shifted poleward 

Modifies Atlantic synoptic activity NAO+ 



Limitations 

•  Limited realism (difficult to compare with obs)  
(ex: orography) 

 
•  Equatorial dynamics not properly captured 

within the QG approximation 
Spurious artefacts in the forcing 

(ex: small residual forcing in the Atlantic) 
 

•  Stratospheric dynamics absent 
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Via a modulation of the polar vortex 
(Garfinkel et al. 2014) 



The Madden-Julian 
Oscillation 

The North Atlantic 
Oscillation 

Troposheric 
pathway 

Stratospheric 
pathway 

Through the QBO? 
(Feng et al. 2019) 

See e.g. Barnes et al. (2019) 
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Via a modulation of the polar vortex 
(Garfinkel et al. 2014) 



MJO => QBO => NAO? 
Feng & Lin (2019) 

500 mb streamfunction anomalies following MJO Phase 3  

5-10 days 10-15 days 



MJO => QBO => NAO? 

•  Stronger NAO following the MJO during Westerly QBO years 
•  Weaker NAO following the MJO during Easterly QBO years 

Feng & Lin (2019) 

500 mb streamfunction anomalies following MJO Phase 3  

5-10 days 10-15 days 

Weak NAO+ 
signature 

Strong NAO+ 
signature 



MJO => QBO => NAO: mechanism? 

200 mb zonal wind anomalies 
Easterly QBO Westerly QBO 



MJO => QBO => NAO: mechanism? 

200 mb zonal wind anomalies 
Easterly QBO Westerly QBO 

     Pacific jet further North 
⇒ Farther away from MJO 

⇒ Weaker Rossby wave excitation 
     (Lin & Brunet 2018) 

Pacific jet further South 
⇒ Closer to MJO 

⇒ Stronger Rossby wave excitation 
     (Lin & Brunet 2018) 
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Conclusions 

⇒ MJO-NAO teleconnection recovered in simplified three 
levels QG model (tropospheric pathway) 

⇒ Physical mechanism suggested by the numerical 
experiments 

Interplay between stationary Rossby wave & nonlinear 
eddy interactions 

 
⇒ Relative importance of tropospheric vs. stratospheric 

pathways (e.g. QBO, Polar vortex) to be quantified… 



Conclusions 

⇒ MJO-NAO teleconnection recovered in simplified three 
levels QG model (tropospheric pathway) 

⇒ Physical mechanism suggested by the numerical 
experiments 

Interplay between stationary Rossby wave & nonlinear 
eddy interactions 

 
⇒ Relative importance of tropospheric vs. Stratospheric effect 

(e.g. QBO, Polar vortex) to be quantified… 

Thank you for your attention! 
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