Abrupt transitions In
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) Super-rotation



Super-rotation
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Angular momentum:
M = acos ¢(f2a cos ¢ + u)
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A planetary atmosphere super-
rotates if it has prograde zonal
flows with more angular
momentum about the rotation
axis than a fluid particle rotating
at the speed of the planet at the

equator (u > Um).
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I. M. Held (1999) « Equatorial superstation in Earth-like atmospheric models »



Titan

Super-rotation in the solar
system

Saturn




Super-rotation on extrasolar
planets




Super-rotation in numerical
simulations
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Shallow Water Equations Primitive Equations

R. K. Scott and L. Polvani (2008) T. Schneider and J. Liu (2009)



Super-rotation requires
convergence of angular momentum
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As the transport term conserves angular momentum, the dissipation terms mix
it, and the boundary terms restore it to the boundary value, we have a
maximum principle property, and super-rotation requires a source term in the

zonally averaged equation through the Reynolds stress (eddy momentum flux
convergence).



ll) Super-rotation can be
forced by Rossby—
Kelvin waves



The usual suspect for a dynamical
mechanism of momentum convergence
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Localised forcing of potential vorticity mixing in a beta-plane dynamics

Localised sources of Rossby waves produces momentum convergence
(Mc Ewan, Thomson and Plumb, 1980, image from W. Young)



Locally forced Rossby-

Kelvin waves at the equator
The Matsuno—Gill problem

ou — fyv +goh = —cu, The forced and dissipated

0y + Pyu+ goh = —ev, linearised Shallow Water equations
0h + Hou+ Hoy = Q0-hiz. on an equatorial / plane.
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The Matsuno—Gill response
(height and velocity)

o — pyv + gd.h = —cu, The forced and dissipated

0y + fyu+goh = —cv, linearized Shallow Water equations
0h + Hou+ Hoy = O—hlt. on an equatorial / plane.

Forcing : O = Q, cos(kx)e‘yz/z.
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(color map) and velocity (green arrows) mean geopotential height (contours)

T. Matsuno (1966) A. E. Gill (1980) Dima, Wallace and Kraucunas (1966)



The Matsuno—Gill response
(momentum flux convergence)

Ou+ 10 u—Pyv + g0.h = —eu The forced and dissipated
t ) " linearized Shallow Water equations

on an equatorial / plane, with a
mean zonal velocity Ue, .

dyv+Ud v+pyu+ goh = —ev,
0h+Uo i+Hou+ Hoy = O—hlz.

Forcing : O = Q, cos(kx)e‘yz/z.
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Matsuno—Gill momentum flux convergence versus mean zonal flow U
(Herbert, Caballero and Bouchet, 2019)



Pressure (mb)

Rossby—Kelvin waves
Induces super-rotation

With CAM model
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lll) Are abrupt transitions to super-
rotation possible?
Which physical parameters control the
possible discontinuity of the transition?



First order (discontinuous)
bifurcations and abrupt transitions
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Abrupt transitions, first order transitions and bistability situations are related.



First order (discontinuous)
bifurcations and positive feedbacks
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For abrupt transition and bistability to occur, there must exist a positive feedback.

Where could the positive feedback come from for super-rotation?



Two possibles positive
feedbacks

1) Hadley cell 2) Momentum flux convergence
o _ Qi sin g v ducosg) - ot L F = Fal, Aver_aged zon_al
ot acos ¢ o op velocity equation
1 0 0
F=- u'vcos¢p —-—u'w'.
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1. Possible positive feedback through the Hadley cell (K. M. Shell and |. M.

Held, 2004).
2. Possible positive feedback through momentum flux convergence induced

by Rossby waves/jet resonance (Arnold, Tziperman and Farrell (2011).

In which range of parameters are those positive feedback robust? Are they
compatible? Are they robust to model complexity (will we see them in GCM and

actual planets)?



Shallow Water model of the
Hadley cell feedback

1D axisymmetric 1-1/2 layer shallow-water equations:
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Zonal acceleration budget at equator:
uh-—h
F—ecu+ — 9 =0.
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Layer thickness:

» Geostrophic balance with angular momentum conserving wind in the tropics
» Radiative equilibrium outside
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h - heq = _18g* (Ueq - U)2.

(K. M. Shell and I. M. Held, 2004)



Shallow Water model of the
Hadley cell feedback

Zonal acceleration budget at equator:
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(K. M. Shell and I. M. Held, 2004)

Can we obtain abrupt transitions through the Hadley cell positive feedback
in a more complex model ?



Discontinuous transitions through the
Hadley cell feedback in an axisymmetric
primitive equation model
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e We obtained bistability in an axisymmetric primitive equation model, with
prescribed constant eddy forcing.

e We observe a balance between the Hadley and the bulk dissipation through a
constant eddy diffusivity.

(Herbert, Caballero and Bouchet, 2019)



The Hadley cell feedback bistability
mechanism seems not robust
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e In axisymmetric models, the bistability range is often extremely narrow, and very
sensible to the bulk dissipation mechanism.

e Can we find a more robust positive feedback and bistability mechanism?
(Herbert, Caballero and Bouchet, 2019)



Two possibles positive
feedbacks

1) Hadley cell 2) Momentum flux convergence
% oQpsing—— 8D O ey ) = opa), Averaged zonal
ot a cos ¢ o1 op velocity equation
1 0 0
F=- u'vcos¢p —-—u'o'.
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1. Possible positive feedback through the Hadley cell (K. M. Shell and |. M.

Held, 2004).
2. Possible positive feedback through momentum flux convergence induced
by Rossby waves/jet resonance (Arnold, Tziperman and Farrell (2011).

In which range of parameters are those positive feedback robust? Are they
compatible? Are they robust to model complexity (will we see them in GCM and
actual planets)?



The positive feedback through
the Rossby wave/jet resonance

Ou+ 10 u—Pyv + g0.h = —eu The forced and dissipated
t ) " linearized Shallow Water equations

on an equatorial / plane, with a
mean zonal velocity Ue, .

dyv+Ud v+pyu+ goh = —ev,
0h+Uo i+Hou+ Hoy = O—hlz.

Forcing : O = Q, cos(kx)e‘yz/z.
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Matsuno—Gill momentum flux convergence versus mean zonal flow U
(Herbert, Caballero and Bouchet, 2019)




Which parameter controls the positive
feedback range through the Rossby wave/
jet resonance
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e The bistability range and abrupt transitions exist for narrow
resonances: kCp > ae, where ¢ is a non-dimensional number of order
unity.
e The width of the bistability range is of order AU ~ — (.



Bistability range for the axisymmetric
model compared to the theoretical results
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Hysteresis experiment, varying the
amplitude of the Matsuno-Gill
forcing, for different values of the

resonance width c.
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The bistability range is actually found for small e/kCR, has a width In
terms of amplitude the decrease with ¢/kCj, and give a discontinuity of
order AU ~ — (, as expected.



Pressure (hPa)
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Zonal wind and transport contours for the axisymmetric primitive equation

model.



Bistability range for the axisymmetric
model compared to the theoretical results
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Hysteresis experiment, varying the
amplitude of the Matsuno-Gill
forcing, for different values of the

resonance bulk eddy diffusivity v.
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For resonant jet-waves positive feedbacks, the abrupt transition
phenomena and the bistability range is robust to changes of the
dissipation.



Conclusions

We have theoretically characterized the range of parameters for bistability
and abrupt transitions to the super-rotating state of the atmosphere.

Those results have been verified in an axisymmetric primitive equation
model. We are working on verifying them on a full GCM.

The Hadley-cell positive feedback by himself seems not robust and highly
dependent on the dissipation.

Combined with the positive feedback of the Rossby wave/jet resonance, the
bistability range is broad and robust. It is mainly characterized by the non

dimensional parameter e¢/kCp that measures the dissipation of the Rossby
—Kelvin waves.

(Herbert, Caballero and Bouchet, JAS 2019 and ArXiv:1905.12401)



