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I) Super-rotation



Super-rotation

I. M.  Held (1999) « Equatorial superstation in Earth-like atmospheric models »

A planetary atmosphere super-
rotates if it has prograde zonal 
fl o w s w i t h m o re a n g u l a r 
momentum about the rotation 
axis than a fluid particle rotating 
at the speed of the planet at the 
equator � .(u > Um)



Super-rotation in the solar 
system

Venus

Titan

Saturn

Jupiter



Super-rotation on extrasolar  
planets



Super-rotation in numerical 
simulations

[13] While our model is highly idealized, we have never-
theless selected parameters that correspond, approximately,
to the Jovian atmosphere. Rossby numbers are similar to
Jovian values, with resulting equatorial jet speeds of ap-
proximately 200 ms!1, and LD/a ranges down to 0.025. As
far as we are aware, this is the first numerical integration
with physically relevant parameters in rotating shallow
water to produce the observed sign of the equatorial jet.
(In a two-dimensional barotropic model, that is, the shallow
water model in the limit LD/a ! 1, Dunkerton and Scott
[2008] showed that superrotating and subrotating equatorial
jets emerged with roughly equal probability in an ensemble
of numerical calculations with identical physical parameters.
Similar behavior also emerges in the shallow water equations
with linear friction for LD/a ^ 1, but has until now not been
found for LD/a " 1, the regime of relevance for the giant
planets.)
[14] The spontaneous formation of the superrotating

equatorial jet and the alternating midlatitude jets, for the
case LD/a = 0.025, is illustrated in Figure 2. Note that the
zonal jets are very robust, despite the fact that the flow is
highly turbulent, as can be seen in Figure 3, which shows
the potential vorticity q at time t = 10000 for the same
integration. Further, we have found that once the equatorial
superrotation has formed it is a robust feature. Several
integrations were carried out beginning from a preexisting
state of superrotation, but without any forcing or dissipation;
in all cases the equatorial superrotation persisted throughout
these integrations (typically for thousands of days).
[15] Despite the simplicity of our model, it is worth

remarking that it also captures another key qualitative
aspect of the circulation of the giant planets. The instanta-
neous potential vorticity field shown in Figure 3 exhibits a
mixture of zonal structures, coherent vortices and filamen-
tary turbulence, not dissimilar to the cloud-top patterns
observed on the planets (here, the potential vorticity and
cloud top fields can both be approximately considered as
quasi-conserved tracer). Despite the qualitative nature of
such a comparison, we submit that any model that purports
to capture the atmospheric circulation of the giant planets
should also be able to reproduce such features.

[16 ] Finally, we stress that the results presented above are
not fortuitous, isolated members of large ensembles of inte-
grations: they are entirely reproducible. In fact we have
performed dozens of integrations with various parameter
settings (varying LD, !0, tfr and trad) and have found that
equatorial superrotation emerges in every calculation in which
radiative relaxation is the dominant form of dissipation.
[17 ] Equatorial superrotation can be understood diagnos-

tically in terms of the mixing by turbulent eddies of the
shallow water potential vorticity q = za/h. It is consistent
with angular momentum conservation provided one recog-
nizes the role of upgradient (i.e. non-advective) potential
vorticity fluxes [McIntyre, 1982; Dunkerton and Scott,
2008]. As can be seen in Figure 3, mixing of q takes place
on either side of, but not across, the equator, resulting in a
sharp jump at the equator (visible as the white band).
Through the diagnostic relation linking the zonal mean q,
u and h, the jump at the equator will necessarily be
accompanied by a superrotating equatorial jet (seeDunkerton
and Scott [2008] for details in the barotropic case).
[18] The jump in q at the equator is associated with an

upgradient (non-advective) flux of q across the equator. In
particular, we note that the equatorial jet here is eddy-
driven, rather than forced directly by the effect of the
radiative relaxation on the zonal flow, in the sense that
the upgradient PV flux is an eddy flux of the form v0q0. This
is demonstrated in Figure 4, which shows the time averaged
potential vorticity flux v0q0. The eddy PV flux is related to
the eddy momentum flux convergence, and hence to an
acceleration of !u through the well-known Taylor identity,
another diagnostic relation, which, in the simplest case of
barotropic motion, takes the form

v0q0 ¼ ! 1
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(Positive v0q0 coincides with the development of positive !u,
and vice versa.) Conceptually the situation is the same as

Figure 3. Instantaneous q = za/h, at t = 10000 for the
case LD/a = 0.025 (corresponding to the solid bold line in
Figure 1).

Figure 4. Time averaged v0q0. Dashed line shows !u (& 4 &
10!4) at t = 10000.
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though no large coherent vortices such as the Great
Red Spot. It is possible that large vortices such as the
Great Red Spot form spontaneously but would require
longer integration times than we can achieve in our
simulation, or that deep-atmosphere dynamics not cap-
tured in our simulation are important for their forma-
tion and stability. That the zonal jets are present and
coherent at every instant, not only upon averaging, is
most clearly evident in the zonal velocity field, which
also shows the equatorial waves recognizable in the
other flow fields, as well as undulations of off-equatorial
jets (Fig. 3d). Animations (available at www.gps.caltech.
edu/;tapio/papers/) show that the equatorial waves, or-
ganized into large wave packets, exhibit retrograde phase

velocities, consistent with their being Rossby waves. The
retrograde tilt of their phase lines away from the equator
(Fig. 3d) indicates that they transport angular momen-
tum toward the equator (cf. Peixoto and Oort 1992,
chapter 11).

b. Vertical structure and angular momentum fluxes

The vertical structure of the zonal flow in the simu-
lation indicates preferential baroclinic eddy generation
in prograde off-equatorial jets and is consistent with
what is known about Jupiter’s equatorial jet in lower
layers (Fig. 4a). The speed of the prograde equatorial jet
increases with depth, for example, at the equator, from

FIG. 3. Flow fields at 0.65 bar at one instant in Jupiter simulation: (a) horizontal divergence, (b) Rossby wave source (5),
(c) relative vorticity of horizontal flow, and (d) zonal velocity. The instant shown is within the period for which the mean zonal
flow is shown in Fig. 1a.
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Shallow Water Equations Primitive Equations



Super-rotation requires 
convergence of angular momentum

∂ū
∂t

= 2Ωv̄ sin ϕ −
v̄

a cos ϕ
∂(ū cos ϕ)

∂ϕ
− ω̄

∂ū
∂p

+ F + D .

F = −
1

a cos ϕ
∂

∂ϕ
u′�v′�cos ϕ −

∂
∂p

u′�ω′�.

Averaged zonal 
velocity equation 

As the transport term conserves angular momentum, the dissipation terms mix 
it, and the boundary terms restore it to the boundary value, we have a 
maximum principle property, and super-rotation requires a source term in the 
zonally averaged equation through the Reynolds stress (eddy momentum flux 
convergence).



II) Super-rotation can be 
forced by Rossby—

Kelvin waves



The usual suspect for a dynamical 
mechanism of momentum convergence 

Localised sources of Rossby waves produces momentum convergence  
(Mc Ewan, Thomson and Plumb, 1980, image from W. Young)

Localised forcing of potential vorticity mixing in a beta-plane dynamics



Locally forced Rossby-
Kelvin waves at the equator

The Matsuno—Gill problem
∂tu − βyv + g∂xh = −ϵu,
∂tv + βyu + g∂yh = −ϵv,

∂th + H∂xu + H∂yv = Q−h /τ .

The forced and dissipated 
linearised Shallow Water equations 

on an equatorial �  plane.β

Forcing : Q = Q0 cos(kx)e−y2/2 .
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The Matsuno—Gill response 
(height and velocity)

∂tu − βyv + g∂xh = −ϵu,
∂tv + βyu + g∂yh = −ϵv,

∂th + H∂xu + H∂yv = Q−h /τ .

The forced and dissipated 
linearized Shallow Water equations 

on an equatorial �  plane.β
Forcing : Q = Q0 cos(kx)e−y2/2 .

Matsuno—Gill response: height h 
(color map) and velocity (green arrows) 

T. Matsuno (1966) A. E. Gill (1980)

the equator both exhibit a predominantly northwest–
southeast tilt in the Northern Hemisphere and a south-
west–northeast tilt in the Southern Hemisphere, with
diffluent easterly flow over the Indian Ocean and con-
fluent westerly flow over the central Pacific. This tilt is
responsible for the equatorward eddy flux of westerly
momentum noted in Figs. 2a and 3a.

The leading terms in the annual-mean zonal momen-
tum balance (1) are shown in Fig. 6. In the free tropo-

sphere there exists a strong compensation between the
MMC term (Fig. 6a) and the eddy momentum flux con-
vergence (Fig. 6b). The contribution from the vertical
eddy flux and mean vertical advection (not shown) are
!3 to 4 times smaller than the leading terms; including
these terms does not significantly alter the appearance
of the residual in Fig. 6c. The most significant imbal-
ances (Fig. 6c) occur outside of the region of interest in
this study: in the boreal stratosphere, where gravity

FIG. 5. Nonlinear solution of the shallow water wave equation forced by an equatorial heat
source. The geopotential height field is contoured, the wind field is represented by arrows, and
the heat source is shown in gray shades. The response bears a strong qualitative resemblance
to the observed zonal variations in the geopotential height and wind fields.

FIG. 4. The 150-hPa annual-mean geopotential height (contours) and wind (arrows); super-
imposed (color) is the tropical annual-mean precipitation (mm day"1). The contour interval
for the geopotential height is 100 m (gray lines); additional contours (black) at 10 m are
inserted in the tropical belt. The contour succession is (. . . 14 100, 14 200, 14 210, 14 220, . . .)
m, with the first black contour at the separation between gray and black contours representing
the 14 210-m line. The wind arrows are plotted only up to 23° in both hemispheres.
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Reanalysis (NCEP) 150-hPa annual 
mean geopotential height (contours) 
Dima, Wallace and Kraucunas (1966)



The Matsuno—Gill response    
(momentum flux convergence)

∂tu+U∂xu−βyv + g∂xh = −ϵu,
∂tv+U∂xv+βyu + g∂yh = −ϵv,

∂th+U∂xh+H∂xu + H∂yv = Q−h /τ .

The forced and dissipated 
linearized Shallow Water equations 

on an equatorial �  plane, with a 
mean zonal velocity �

β
Uex .

Forcing : Q = Q0 cos(kx)e−y2/2 .

Matsuno—Gill momentum flux convergence versus mean zonal flow U 
(Herbert, Caballero and Bouchet, 2019) 
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Rossby—Kelvin waves 
induces super-rotation

Arnold, Tziperman and Farrell (2011) 

With CAM  model
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III) Are abrupt transitions to super-
rotation possible?  

Which physical parameters control the 
possible discontinuity of the transition?



First order (discontinuous) 
bifurcations and abrupt transitions

�Q

�U

�Q

�U

No bifurcation First order bifurcation

�Q1 �Q2

Abrupt transitions, first order transitions and bistability situations are related.



First order (discontinuous) 
bifurcations and positive feedbacks 

�Q

�U

�Q

�U

No bifurcation First order bifurcation

�Q1 �Q2

∂tU = ℱ(U, Q)

ℱ < 0

ℱ > 0

ℱ > 0

ℱ < 0

∂ℱ
∂U

< 0 : Negative feedback
∂ℱ
∂U

> 0 : Positive feedback

For abrupt transition and bistability to occur, there must exist a positive feedback.

Where could the positive feedback come from for super-rotation?



Two possibles positive 
feedbacks

∂ū
∂t

= 2Ωv̄ sin ϕ−
v̄

a cos ϕ
∂(ū cos ϕ)

∂ϕ
− ω̄

∂ū
∂p

+ F ≡ ℱ[ū],

F = −
1

a cos ϕ
∂

∂ϕ
u′�v′�cos ϕ −

∂
∂p

u′�ω′�.

1) Hadley cell 2) Momentum flux convergence

Averaged zonal 
velocity equation 

1. Possible positive feedback through the Hadley cell (K. M. Shell and I. M. 
Held, 2004). 

2. Possible positive feedback through momentum flux convergence induced 
by Rossby waves/jet resonance (Arnold, Tziperman and Farrell (2011). 

In which range of parameters are those positive feedback robust? Are they 
compatible? Are they robust to model complexity (will we see them in GCM and 
actual planets)?



Shallow Water model of the 
Hadley cell feedback

(K. M. Shell and I. M. Held, 2004)



Shallow Water model of the 
Hadley cell feedback

(K. M. Shell and I. M. Held, 2004)

Can we obtain abrupt transitions through the Hadley cell positive feedback 
in a more complex model ?



Discontinuous transitions  through the 
Hadley cell feedback in an axisymmetric 

primitive equation model

F
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U
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• We obtained bistability in an axisymmetric primitive equation model, with 
prescribed  constant eddy forcing. 

• We observe a balance between the Hadley and the bulk dissipation through a 
constant eddy diffusivity.

(Herbert, Caballero and Bouchet, 2019) 

Hysteresis experiment for varying 
prescribed uniform momentum flux 
convergence in an axisymmetric 
model.  



The Hadley cell feedback bistability 
mechanism seems not robust
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• In axisymmetric models, the bistability range is often extremely narrow, and very 
sensible to the bulk dissipation mechanism. 

• Can we find a more robust positive feedback and bistability mechanism? 

Value of the bulk 
eddy diffusivity

(Herbert, Caballero and Bouchet, 2019) 



Two possibles positive 
feedbacks

∂ū
∂t

= 2Ωv̄ sin ϕ−
v̄
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1) Hadley cell 2) Momentum flux convergence

Averaged zonal 
velocity equation 

1. Possible positive feedback through the Hadley cell (K. M. Shell and I. M. 
Held, 2004). 

2. Possible positive feedback through momentum flux convergence induced 
by Rossby waves/jet resonance (Arnold, Tziperman and Farrell (2011). 

In which range of parameters are those positive feedback robust? Are they 
compatible? Are they robust to model complexity (will we see them in GCM and 
actual planets)?



The positive feedback through 
the Rossby wave/jet resonance

∂tu+U∂xu−βyv + g∂xh = −ϵu,
∂tv+U∂xv+βyu + g∂yh = −ϵv,

∂th+U∂xh+H∂xu + H∂yv = Q−h /τ .

The forced and dissipated 
linearized Shallow Water equations 

on an equatorial �  plane, with a 
mean zonal velocity �

β
Uex .

Forcing : Q = Q0 cos(kx)e−y2/2 .

Matsuno—Gill momentum flux convergence versus mean zonal flow U 
(Herbert, Caballero and Bouchet, 2019) 
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F =
Q2

0ϵk2(cK − cR)(2U + cK − 3cR)
12[ϵ2 + k2(U + cR)2][ϵ2 + k2(U + cK)2]

Momentum flux convergence at 
the equator 

Positive feedback range: �   
∂F
∂U

> 0



Which parameter controls the positive 
feedback range through the Rossby wave/

jet resonance 

F =
Q2

0ϵk2(cK − cR)(2U + cK − 3cR)
12[ϵ2 + k2(U + cR)2][ϵ2 + k2(U + cK)2]

Momentum flux convergence at 
the equator 
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Momentum flux  
convergence
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• The bistability range and abrupt transitions exist for narrow 
resonances: � , where �  is a non-dimensional number of order 
unity. 

• The width of the bistability range is of order � .

kCR > αϵ α

ΔU ≃ − CR



Bistability range for the axisymmetric 
model compared to the theoretical results

The bistability range is actually found for small � , has a width in 
terms of amplitude the decrease with � , and give a discontinuity  of 
order � , as expected.

ϵ/kCR
ϵ/kCR

ΔU ≃ − CR
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Forcing amplitude �Q0

Hysteresis experiment, varying  the 
amplitude of the Matsuno-Gill 
forcing, for different values of the 
resonance width � .  ϵ



The normal and the super-
rotating states

Zonal wind and transport contours for the axisymmetric primitive equation 
model .  
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Bistability range for the axisymmetric 
model compared to the theoretical results

For resonant jet-waves positive feedbacks, the abrupt transition 
phenomena and the bistability range is robust to changes of the 
dissipation.
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Forcing amplitude �Q0

Hysteresis experiment, varying  the 
amplitude of the Matsuno-Gill 
forcing, for different values of the 
resonance bulk eddy diffusivity � .  ν



Conclusions 
• We have theoretically characterized the range of parameters for bistability 

and abrupt transitions to the super-rotating state of the atmosphere.


• Those results have been verified in an axisymmetric primitive equation 
model. We are working on verifying them on a full GCM.


• The Hadley-cell positive feedback by himself seems not robust and highly 
dependent on the dissipation.


• Combined with the positive feedback of the Rossby wave/jet resonance, the 
bistability range is broad and robust. It is mainly characterized by the non 
dimensional parameter  �  that measures the dissipation of the Rossby
—Kelvin waves.


(Herbert, Caballero and Bouchet, JAS 2019 and ArXiv:1905.12401) 

ϵ/kCR


