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Rossby Waves and Rotationally-Influenced Convective Modes
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Background of the Study

—— e — Importance of Solar Rossby Waves

* Large-scale (I < 120) convection in the Sun
1s still poorly understood.

* Equatorial Rossby waves have recently

been detected on the solar surface (Fig.1)
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* They contribute a significant fraction of I P L

Results Il : Convective Modes

—_——— e — = Power Spectra : Prograde & Retrograde Modes - . — . — . —. —

localized near the surface

e We also find two distinct modes that
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are mostly localized near the surface
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(A) Retrograde mode: w < 0
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Fig 1: Power Spectrum of radial vorticity

_________ Thermal Rossby Wave (Columnar Convection)

* Thermal Rossby waves originate from the conservation law of potential
vorticity (Vx# + 20g)/p =~ const. and propagate in a prograde direction.

* Often attributed to an equatorial acceleration of the differential rotation.

* Reported many times 1n simulations but NOT found in observations so far.

Methods

e — e a m Numerical Simulation

* Rotating convection with solar-like stratification from 0.71Rg to 0.96 R
* Solar rotation rate Qg5 /27 = 431nHz 1s used but the luminosity 1s decreased by

20 to achieve a solar-like differential rotation (Fi1g.2)
[m/s]
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Fig 2: Snapshots of (Left) radial velocity and (Center) radial vorticity at r/R®=O.95. (Right) Differential rotation.

___________________ Data analysis - — — — — — — . — . — . —

* Total 15-year data with the time cadence of about 4.7 days 1s analyzed.
* Perform SVD on the power spectrum B, (r, w) to extract the eigenfunctions.

Results | : Equatorial Rossby Wave

___________ Power Spectrum & Eigenfunctions .. — . — . —. —. —. —. —
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_ * A well-defined power ridge can be
é—o.os seen on the sectoral mode (I = m)
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Rossby wave dispersion relation.
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* In our simulation, the sectoral mode

(B) Prograde mode: w >0
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* These two modes form a continuous

Sectoral Rossby wave (Global)
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0.0 power ridge across m = 0 (Fig.6)
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Fig 5: [ = m Power Spectrumof vgatm =1
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Fig 6: (Left) | = m power spectrum of vy and (Right) [ = m+1 power spectrum of V - ¥, near the surface

o e (A) Retrograde Mode — . — . — . — . — . — . — . — . —

Retrograde propagating mode has a nature of equatorial Rossby waves with
the radial node n = 1 mode. The motion 1s more toroidal than radial.
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Fig 7: (Left) Eigenfunction of retrograde propagating mode at m = 2 and (Left) schematic picture of this mode

e (B) Prograde Mode - . — . — . — . — . — . — . —. —. —

Prograde propagating mode has a nature of anti-symmetric (I = m + 1) thermal

Rossby waves. Vortical motion 1n z-direction 1s prominent.
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Fig 3: Power spectrum of vg (symmetric).
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Rossby wave exists globally in radius
only for m < m, = 4.

Eigenfunctions of this mode agree well
with the linear theory for m < m,

The motion 1s mostly toroidal and the
mode 1s 1n a geostrophic balance.
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Fig 4: Eigenfunctions of the equatorial Rossby waves for m = 2 case (Right) vg(7) at the equator.
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Fig 8: (Left) Eigenfunction of prograde propagating mode at m = 2 and (Left) schematic picture of this mode

Summary & Discussion

* A mode-by-mode analysis of multiple Rossby waves is reported.

* A mixed-mode with both equatorial Rossby wave nature and anti-symmetric
thermal Rossby wave nature 1s found 1n our simulation.

* These modes are thought to be convectively-driven.

* These convective modes might be understood as an equatorially-trapped
Poincare convection mode [Zhang., 1994, Simitev and Busse., 2003]

» Effects of differential rotation and stratification?

* Any implications for the angular momentum transport in the Sun?

* Linear analysis 1s ongoing to address the above 1ssues.




